Tips and strategies for restoring large cavities using fibre-reinforced material

By Drs Stephane Browet, Belgium, & Javier Tapia Guadix, Spain

Evidence has shown that one of the biggest challenges facing dentists today is restoring severely damaged teeth. In order for these restorations to be long lasting, certain biomechanical and biochemical criteria need to be met. Even the smallest of cavities can result in dramatic failure owing to poor material choice and incorrect biomechanical interaction between the tooth and the material.

We often see cases where a small cavity was restored with amalgam a few years prior. The amalgam itself meets the material criteria but the biomechanical issues are clearly evident and cause severe cracks to develop. These cracks could lead to complete failure of the restoration with loss of vitality of the tooth, and possibly even loss of the tooth. Amalgam has long been relied upon as a durable restorative material. But what value is a restoration itself if it fails? The final objective should be to keep cavities small, to restore those cavities with another material.

In addition, the tooth will also be damaged to some extent. Our challenge is to minimise this damage by making good choices in cavity design and material. The principles of cavity design are well established. The width of the cavity should not exceed half of the intercuspal width. This means the surrounding tooth structure is strong enough to function with the restorative material inside. It is recommended that you need between 2–3 mm of wall thickness in order to maintain good intrinsic strength. It is clear that if we don’t respect these criteria and the cavity ends up with very thin and undermined walls, biomechanical failure will occur.

Our biggest problem here is that we get cavities like this to start with. It’s not necessarily our choice to drill a cavity like this for caries removal. Often times an old amalgam restoration can lead to this type of cavity and the temptation is to keep the remaining tooth structure to enable a direct restoration. The tendency is to keep those cusps, as references for occlusal morphology and to preserve as much tooth tissue as possible. The force will create fatigue within the cusps. Even with a bonded restoration, this fatigue will eventually cause the wall to fracture. The following clinical situations call for cuspal coverage:

1. A wide isthmus and thin walls.
2. If there is no dentinal support and cusps are undermined—blocking out the unsupported enamel will not solve the problem because curing a composite inside a shell will fracture it.
3. A horizontal crack in the underbanded base of the cusp.
5. Any crack inside the pulp chamber.
6. An endodontically treated tooth with MOD restoration requires coverage for all cusps.
7. An endodontically treated tooth with a crack in the pulpal floor requires all cusps to be covered.

everX posterior

What is needed for these restorations is a material that will bond to the tooth. This is not a guarantee that the restoration will work, but some sort of adhesion is required that is not mechanically retained like amalgam. What is needed is a material that behaves like tooth structure, something that resists fatigue and also increases the load-bearing capacity of the total restorative complex of the tooth with the restoration.

everX Posterior (GC) fibre-reinforced composite material offers...
Dental health is the cornerstone of your well-being. Restorations created with Planmeca FIT™ have been individually crafted to fit your unique needs – ensuring durability that will stand the test of time.

Come meet us at:

FDI Booth A145, Bangkok, Thailand, 22 – 25 September 2015
China Dental Show Booth D07, Shanghai, China, 24 – 27 September 2015
Shanghai Dentech C01-05, Booth C26-31, Shanghai, China, 21 – 24 October 2015

More info
www.planmeca.com

Planmeca Oy, Asentajankatu 6, 00880 Helsinki, Finland. Tel. +358 20 7795 500, fax +358 20 7795 555, sales@planmeca.com
For final lustre a goat hair brush with diamond paste will create a glossy result. Always respect manufacturer guidelines for maximum rotation speed for polishing points. When adding the final layer of regular composite, use air block during the light-cure in layers of 2mm thickness. Use a ball plugger or microbrush to adapt the material to the floor and take care that everX Posterior should be completely enclosed by the other material.

Additional tips for using everX Posterior:
- everX Posterior should be completely enclosed by the outer material.
- First close the proximal, then the occlusal.
- Use a ball plugger or microbrush to adapt the material to the floor and take your time.
- Light-cure in layers of 2mm thickness.
- When adding the final layer of regular composite, use air block during the final light-cure to create a surface with a good finish and without an oxygen inhibited layer.
- Always respect manufacturer guidelines for maximum rotation speed for polishing points – avoid heating because it will change the properties of the material.
- For final lustre a goat hair brush with diamond paste will create a glossy result for surface polishing.

Fracture prevention

Some dentists are misguided when they think that a tooth can be saved by using a very strong material. In actual fact, when using such a strong material, the tooth inadvertently becomes the weaker part of the restorative complex. This means that if failure occurs, the tooth will fail last. With this everX Posterior, in the case of failure, the damage can be contained.

Cracks can be deviated along the material inside the tooth, resulting in fractures which are more above gum level, instead of running through the entire tooth leading to catastrophic failure. It will still lead to failure, but will allow for further restoration because the fracture line is still visible and accessible. Fracture toughness is another physical property which is twice as high in everX Posterior than in conventional composites. The flexural modulus is closer to that of natural dentine, so it behaves like natural tooth structure. While the build-up procedure of the material allows for a well-functioning restorative complex, it’s how the material inside the tooth, resulting from the type of problem we have discussed in this article. It is made up of three sections: an interpenetrating polymer network (IPN) resin matrix, e-glass fibres and fillers, initiators and inhibitors. What is really important in a material like this, is the way in which the e-glass fibres and the IPN matrix interact with each other because this makes it possible to absorb the loading forces. This transfer of pressure from the matrix to the fibres on a microscopic scale means that crack propagation can be stopped while at the same time giving the restoration the capacity to resist very high loading forces. The maximum bite force for humans is about 3,000 N. A conventional composite has a similar resistance. However, if you compare a combination of everX Posterior, which is a base material that should be covered with an overlaying composite, the total load-bearing capacity is much higher than with composite alone, even “almost double.”

Fracture prevention

Some dentists are misguided when they think that a tooth can be saved by using a very strong material. In actual fact, when using such a strong material, the tooth inadvertently becomes the weaker part of the restorative complex. This means that if failure occurs, the tooth will fail last. With this everX Posterior, in the case of failure, the damage can be contained.

Cracks can be deviated along the material inside the tooth, resulting in fractures which are more above gum level, instead of running through the entire tooth leading to catastrophic failure. It will still lead to failure, but will allow for further restoration because the fracture line is still visible and accessible. Fracture toughness is another physical property which is twice as high in everX Posterior than in conventional composites. The flexural modulus is closer to that of natural dentine, so it behaves like natural tooth structure. While the build-up procedure of the material allows for a well-functioning restorative complex, it’s how the material inside the tooth, resulting from the type of problem we have discussed in this article. It is made up of three sections: an interpenetrating polymer network (IPN) resin matrix, e-glass fibres and fillers, initiators and inhibitors. What is really important in a material like this, is the way in which the e-glass fibres and the IPN matrix interact with each other because this makes it possible to absorb the loading forces. This transfer of pressure from the matrix to the fibres on a microscopic scale means that crack propagation can be stopped while at the same time giving the restoration the capacity to resist very high loading forces. The maximum bite force for humans is about 3,000 N. A conventional composite has a similar resistance. However, if you compare a combination of everX Posterior, which is a base material that should be covered with an overlaying composite, the total load-bearing capacity is much higher than with composite alone, even “almost double.”

Fracture prevention

Some dentists are misguided when they think that a tooth can be saved by using a very strong material. In actual fact, when using such a strong material, the tooth inadvertently becomes the weaker part of the restorative complex. This means that if failure occurs, the tooth will fail last. With this everX Posterior, in the case of failure, the damage can be contained.

Cracks can be deviated along the material inside the tooth, resulting in fractures which are more above gum level, instead of running through the entire tooth leading to catastrophic failure. It will still lead to failure, but will allow for further restoration because the fracture line is still visible and accessible. Fracture toughness is another physical property which is twice as high in everX Posterior than in conventional composites. The flexural modulus is closer to that of natural dentine, so it behaves like natural tooth structure. While the build-up procedure of the material allows for a well-functioning restorative complex, it’s how the material inside the tooth, resulting from the type of problem we have discussed in this article. It is made up of three sections: an interpenetrating polymer network (IPN) resin matrix, e-glass fibres and fillers, initiators and inhibitors. What is really important in a material like this, is the way in which the e-glass fibres and the IPN matrix interact with each other because this makes it possible to absorb the loading forces. This transfer of pressure from the matrix to the fibres on a microscopic scale means that crack propagation can be stopped while at the same time giving the restoration the capacity to resist very high loading forces. The maximum bite force for humans is about 3,000 N. A conventional composite has a similar resistance. However, if you compare a combination of everX Posterior, which is a base material that should be covered with an overlaying composite, the total load-bearing capacity is much higher than with composite alone, even “almost double.”

Fracture prevention

Some dentists are misguided when they think that a tooth can be saved by using a very strong material. In actual fact, when using such a strong material, the tooth inadvertently becomes the weaker part of the restorative complex. This means that if failure occurs, the tooth will fail last. With this everX Posterior, in the case of failure, the damage can be contained.

Cracks can be deviated along the material inside the tooth, resulting in fractures which are more above gum level, instead of running through the entire tooth leading to catastrophic failure. It will still lead to failure, but will allow for further restoration because the fracture line is still visible and accessible. Fracture toughness is another physical property which is twice as high in everX Posterior than in conventional composites. The flexural modulus is closer to that of natural dentine, so it behaves like natural tooth structure. While the build-up procedure of the material allows for a well-functioning restorative complex, it’s how the material inside the tooth, resulting from the type of problem we have discussed in this article. It is made up of three sections: an interpenetrating polymer network (IPN) resin matrix, e-glass fibres and fillers, initiators and inhibitors. What is really important in a material like this, is the way in which the e-glass fibres and the IPN matrix interact with each other because this makes it possible to absorb the loading forces. This transfer of pressure from the matrix to the fibres on a microscopic scale means that crack propagation can be stopped while at the same time giving the restoration the capacity to resist very high loading forces. The maximum bite force for humans is about 3,000 N. A conventional composite has a similar resistance. However, if you compare a combination of everX Posterior, which is a base material that should be covered with an overlaying composite, the total load-bearing capacity is much higher than with composite alone, even “almost double.”

Fracture prevention

Some dentists are misguided when they think that a tooth can be saved by using a very strong material. In actual fact, when using such a strong material, the tooth inadvertently becomes the weaker part of the restorative complex. This means that if failure occurs, the tooth will fail last. With this everX Posterior, in the case of failure, the damage can be contained.

Cracks can be deviated along the material inside the tooth, resulting in fractures which are more above gum level, instead of running through the entire tooth leading to catastrophic failure. It will still lead to failure, but will allow for further restoration because the fracture line is still visible and accessible. Fracture toughness is another physical property which is twice as high in everX Posterior than in conventional composites. The flexural modulus is closer to that of natural dentine, so it behaves like natural tooth structure. While the build-up procedure of the material allows for a well-functioning restorative complex, it’s how the material inside the tooth, resulting from the type of problem we have discussed in this article. It is made up of three sections: an interpenetrating polymer network (IPN) resin matrix, e-glass fibres and fillers, initiators and inhibitors. What is really important in a material like this, is the way in which the e-glass fibres and the IPN matrix interact with each other because this makes it possible to absorb the loading forces. This transfer of pressure from the matrix to the fibres on a microscopic scale means that crack propagation can be stopped while at the same time giving the restoration the capacity to resist very high loading forces. The maximum bite force for humans is about 3,000 N. A conventional composite has a similar resistance. However, if you compare a combination of everX Posterior, which is a base material that should be covered with an overlaying composite, the total load-bearing capacity is much higher than with composite alone, even “almost double.”

Fracture prevention

Some dentists are misguided when they think that a tooth can be saved by using a very strong material. In actual fact, when using such a strong material, the tooth inadvertently becomes the weaker part of the restorative complex. This means that if failure occurs, the tooth will fail last. With this everX Posterior, in the case of failure, the damage can be contained.

Cracks can be deviated along the material inside the tooth, resulting in fractures which are more above gum level, instead of running through the entire tooth leading to catastrophic failure. It will still lead to failure, but will allow for further restoration because the fracture line is still visible and accessible. Fracture toughness is another physical property which is twice as high in everX Posterior than in conventional composites. The flexural modulus is closer to that of natural dentine, so it behaves like natural tooth structure. While the build-up procedure of the material allows for a well-functioning restorative complex, it’s how the material inside the tooth, resulting from the type of problem we have discussed in this article. It is made up of three sections: an interpenetrating polymer network (IPN) resin matrix, e-glass fibres and fillers, initiators and inhibitors. What is really important in a material like this, is the way in which the e-glass fibres and the IPN matrix interact with each other because this makes it possible to absorb the loading forces. This transfer of pressure from the matrix to the fibres on a microscopic scale means that crack propagation can be stopped while at the same time giving the restoration the capacity to resist very high loading forces. The maximum bite force for humans is about 3,000 N. A conventional composite has a similar resistance. However, if you compare a combination of everX Posterior, which is a base material that should be covered with an overlaying composite, the total load-bearing capacity is much higher than with composite alone, even “almost double.”